Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

Attention and perception are potentiated for emotionally significant stimuli, promoting efficient reactivity and survival. But does such enhancement extend to stimuli simultaneously presented across different sensory modalities? We used functional magnetic resonance imaging in humans to examine the effects of visual emotional signals on concomitant sensory inputs in auditory, somatosensory, and visual modalities. First, we identified sensory areas responsive to task-irrelevant tones, touches, or flickers, presented bilaterally while participants attended to either a neutral or a fearful face. Then, we measured whether these responses were modulated by the emotional content of the face. Sensory responses in primary cortices were enhanced for auditory and tactile stimuli when these appeared with fearful faces, compared with neutral, but striate cortex responses to the visual stimuli were reduced in the left hemisphere, plausibly as a consequence of sensory competition. Finally, conjunction and functional connectivity analyses identified 2 distinct networks presumably responsible for these emotional modulatory processes, involving cingulate, insular, and orbitofrontal cortices for the increased sensory responses, and ventrolateral prefrontal cortex for the decreased sensory responses. These results suggest that emotion tunes the excitability of sensory systems across multiple modalities simultaneously, allowing the individual to adaptively process incoming inputs in a potentially threatening environment.

Original publication

DOI

10.1093/cercor/bhw337

Type

Journal article

Journal

Cereb Cortex

Publication Date

01/01/2017

Volume

27

Pages

68 - 82

Keywords

attention, emotion, fMRI, sensory modulation, Adolescent, Adult, Attention, Auditory Perception, Cerebral Cortex, Facial Expression, Facial Recognition, Fear, Female, Humans, Touch, Visual Pathways, Visual Perception, Young Adult