Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Mixture models are commonly used in the statistical segmentation of images. For example, they can be used for the segmentation of structural medical images into different matter types, or of statistical parametric maps into activating and nonactivating brain regions in functional imaging. Spatial mixture models have been developed to augment histogram information with spatial regularization using Markov random fields (MRFs). In previous work, an approximate model was developed to allow adaptive determination of the parameter controlling the strength of spatial regularization. Inference was performed using Markov Chain Monte Carlo (MCMC) sampling. However, this approach is prohibitively slow for large datasets. In this work, a more efficient inference approach is presented. This combines a variational Bayes approximation with a second-order Taylor expansion of the components of the posterior distribution, which would otherwise be intractable to Variational Bayes. This provides inference on fully adaptive spatial mixture models an order of magnitude faster than MCMC. We examine the behavior of this approach when applied to artificial data with different spatial characteristics, and to functional magnetic resonance imaging statistical parametric maps.

Type

Journal article

Journal

IEEE Trans Med Imaging

Publication Date

10/2006

Volume

25

Pages

1380 - 1391

Keywords

Algorithms, Artificial Intelligence, Bayes Theorem, Brain, Computer Simulation, Humans, Image Enhancement, Image Interpretation, Computer-Assisted, Information Storage and Retrieval, Magnetic Resonance Imaging, Models, Neurological, Models, Statistical, Pattern Recognition, Automated, Reproducibility of Results, Sensitivity and Specificity